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Introduction

The purpose of this work was to identify uterine contractions 
using the Hilbert–Huang transform (HHT) to gain a better in-
sight of the myometrial activities of the human uterus during 
pregnancy. The myometrium is the muscle layer in the hu-
man uterus and consists of small smooth muscle cells. The 
coordinated activity of these muscles is responsible for the 
generation of uterine mechanical contractions, which leads 

to the delivery of the fetus. The diagnosis of labor is currently 
one of the most difficult problems encountered by obstetri-
cal healthcare providers. Prediction of labor is important in 
both normal and complicated pregnancies. A major health 
problem is the increase in the number of preterm deliveries, 
which are responsible for 75% of all deaths in newborns (1, 2). 
In addition, preterm delivery is associated with several cogni-
tive and health problems in later life and enormous costs for 
the health system (3). A better understanding of myometrial 
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activities could help reduce preterm deliveries and the costs 
of prematurity in the following years. Apart from recording the 
changes in the cervical state, the progress of labor is monitored 
by measuring the rate, duration, and amplitude of uterine con-
traction using a tocodynamometer (TOCO) or the measurement 
of intrauterine pressure using an intrauterine pressure catheter 
(IUPC). Because of its simplicity and almost risk-free nature for 
the mother and fetus, the TOCO technique is widely used by 
physicians. However, its susceptibility to maternal motion arti-
facts is known to be the major drawback. Compared with IUPC, 
which is an invasive procedure that requires the rupture of the 
amniotic membranes, TOCO provides less reliable results. Be-
cause of the poor predictive power of TOCO and the invasive 
nature and limited use of IUPC (4), neither technique has been 
beneficial in the prediction of preterm labor or the diagnosis 
of true labor at term. If physicians were able to more objec-
tively differentiate between true and false labor, unnecessary 
visitations to the hospital and the associated treatment could 
be avoided.
The SQUID Array for Reproductive Assessment (SARA) (4) sys-
tem is a non-invasive device that is designed to specifically 
study different aspects of maternal and fetal physiology, particu-
larly in detecting weak biomagnetic fields associated with the 
electrophysiological activity in the human body (5). The role of 
SARA (6) can be summarized as the process of capturing the 
fluctuating magnetic field activities “generated during the polar-
ization of the biological tissue, using a set of sensors (an array of 
151 SQUID sensors) covering the complete area of the maternal 
abdomen starting from the perineum to the top of the uterine 
fundus.” The advantage of using SARA is that it records magne-
tomyographic (MMG) activity related to the uterine electrophysi-
ological activity, and this information could provide an opportu-
nity to track the parameters that would aid in the prediction of 
the onset of active labor. This ability would be of great clinical 
benefit for the management of term patients and particularly for 
the management of patients at high risk for premature delivery. 
Myometrial activity patterns may reveal whether a contraction 
will lead to a delivery. As a novel approach in gaining new in-
sights into uterine data, HHT, which has already been proven 
to be successful in various non-stationary and non-linear data 
analysis (6-10), was examined. HHT can be used to better ex-
plain its application in the identification of contraction patterns 
and data analysis properties. Some of these properties include 
decomposition and expansion of the data into components that 
are called intrinsic mode functions (IMF) (11), which reveal in-
teresting information about the original data, localizing events 
in the time-frequency domain using temporal frequency energy 
distribution, and noise removal.

Material and Methods

Data recording
Uterine MMG signals were recorded from pregnant patients at 
gestational ages of 32–38 weeks. The study was approved by 
the University of Arkansas for Medical Sciences (UAMS) Human 
Research Advisory Board and performed after obtaining written 
consent from each patient. Transabdominal MMG signals were 

recorded with the SARA (VSM MedTech Inc., Cocuitlam, BC, 
Canada) system with an array of magnetic sensors [i.e., 151 pri-
mary magnetic sensors spaced approximately 3 cm apart over 
an area of 850 cm2 (4)]. The sensors are arranged in a concave 
array that spans the maternal abdomen longitudinally from the 
symphysis pubis to the uterine fundus and a similar lateral dis-
tance. 
Because of the invasive nature of IUPC recording, simultaneous 
recordings with SARA were performed only on a single patient. 
Although for all the subjects, maternal perception of the con-
traction was also recorded simultaneously with SARA measure-
ments. Therefore, during the recording process, the subjects 
were asked to use their finger in the up-position as a duration 
indicator of each perceived contraction to inform the operator 
to mark the beginning and end time points of the contraction in 
the record. 
The recording times ranged from 12 to 28 min, and the sam-
pling rate was 250 Hz. The data were down-sampled to 25 Hz to 
reduce the computational complexity and post-processed with 
a bandpass filter (0.05–1 Hz) because the uterine contraction 
activity is a band-limited process (0.05–1 Hz) (8).

Data analyses
Empirical mode decomposition (EMD) (12) is the decomposi-
tion of the signal into IMFs and is based on the direct extrac-
tion of the energy associated with various intrinsic time scales. 
These time scales are the most important features of complex 
biological systems such as the uterus. Among the decomposed 
IMFs, we selected the one that has the highest standard devia-
tion (SD). The choice of IMF with the highest SD is based on the 
fact that the manifestation of a contraction will make a large de-
viation from the signal’s average, thereby making the SD higher.
The use of Hilbert transform to drive the local energy and the 
instantaneous frequency from the IMFs provides a full energy-
frequency-time distribution of the data. Such representation is 
designated as the Hilbert spectrum. They have well-behaved 
Hilbert transforms, as expressed in IMFs, from which the instan-
taneous frequencies can be calculated. Thus, any contraction-
related event can be localized based upon time.
Decomposition can also be viewed as an expansion of the data 
in terms of the IMFs. Subsequently, these IMFs based on and 
derived from the data can serve as the basis of the non-linear 
expansion of data. The most interesting property of the method 
is its adaptive nature to data.

Hilbert–Huang transform (HHT) in uterine contractions
Our aim was to determine whether HHT of each channel can 
reveal and localize contractions in the uterus. To explore the 
potentiality of HHT, we developed a system to conduct a se-
ries of experiments. We want to note that HHT is more of an 
empirical approach rather than a theoretical method. It has 
been successfully applied in many areas such as non-linear 
ocean wave evolution data; earthquake signals and structure 
responses; bridge and structural health monitoring; biomedi-
cal signals such as blood pressure fluctuations; long-term en-
vironmental data , including global temperature variations, 
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Antarctic ice extents records, solar irradiance variance; hydro-
machinery design; and machine vibration. The key feature of 
HHT is EMD, which provides a unique basis called IMFs for the 
underlying hidden parts of the data that are derived from data 
and adaptive to the data. 

Empirical mode decomposition (EMD) method
Two conditions need to be satisfied for any IMF. The first condi-
tion refers to the fact where the number of extrema and zero 
crossings are either equal or differ at the most by one. The 
second condition refers to the mean value of the envelope de-
fined by the local minima and local maxima being zero at any 
point. According to these two conditions, the sifting process is 
applied. In the sifting process, the cubic splines from the local 
maxima and local minima points of uterine contraction data 
are calculated. These cubic splines are called envelopes. Then, 
the average is calculated from the envelopes using cubic spline 
approximations, and this average is subtracted from the signal. 
The process is repeated until the resulting mean satisfies the 
two aforementioned properties of IMF. More details on the use 
of EMD can be found in (9).

The HHT methodology is described as follows: Let X(t) be the 
MMG signal, IMFi(t) be the ith IMF function, and R(t) be the resi-
due of the signal. Then, the original signal X(t) can be written 
as follows:

  
   

(1)

The sifting process is terminated if the difference between the 
successive IMFs is less than a prefixed tolerance defined as fol-
lows: 

     (2)

SD can have a value between 0.2 and 0.3 according to (9). In all 
of our calculations, we set SD to 0.2 for a more sensitive differ-
ence between siftings.

The Hilbert transform is applied to IMFs to obtain the local ener-
gy of the contraction. However, applying the Hilbert transform to 
a non-stationary signal may result in two cases: 1) frequencies 
that are outside the Fourier spectrum or 2) frequencies that go 
outside the band limit for a band-limited signal. To prevent these 
two situations, the Hilbert transform should be applied to nar-
row band data (10). Fortunately, IMFs are narrow band signals, 
and they behave well with the Hilbert transform.

The Hilbert transform, Y(t), of a given signal, S(t), is as follows:

         ,  (3)

where PV denotes the Cauchy principal value. With this defini-
tion, S(t) and Y(t) can be used to form the analytical signal Z(t), 
defined as follows:

     (4)

where time-dependent amplitude a(t), phase θ(t), and the in-
stantaneous frequency ω(t) are defined as follows:

     (5)

     (6)

     (7)

S(t) can be calculated from IMF components using the Hilbert 
transform, as a generalized expansion of the Fourier transform 
with the time variable amplitudes and frequencies:

     (8)

Results

We applied HHT to the uterine contraction data obtained from 
12 patients. In 11 datasets, there was no quantitative estimate 
of the performance of HHT because the maternal perception 
of contraction is a subjective measure. However, in all of the 
11 cases, there was a good (qualitative) agreement between 
the two entities (maternal perceived contractions and the ones 
identified by HHT). We have recorded the maternal percep-
tion of the contractions for all the datasets and compared the 
instances at which the mothers perceived the contractions with 
the instances of the ones identified by the HHT approach. In 
most of the recordings, HHT also identified the low-amplitude 
contractions, which mothers could not perceive and report as 
contractions. Because there was a good degree of correlation 
between the events perceived by mothers (the high-amplitude 
contractions) and those identified by HHT, any quantification of 
these two entities would make the approach over-appealing; 
hence, we have not quantified the same.
We were able to visually detect contraction locations in the 
HHT-processed uterine signals. For verification and validation 
purposes, we compared our findings with the IUPC data of one 
patient who had both MMG and IUPC recordings. For this pa-
tient, recordings in each sensor lasted for 720 s (at a sampling 
frequency of 25 Hz, resulting in 18000 data points). To facilitate 
the comparison of the result with IUPC data (Figure 1), we add-
ed the results of HHT for all sensors together (Figure 2). As men-
tioned in the earlier section, IUPC was recorded simultaneously 
with MMG for this subject. We observed that the mechanical 
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(IUPC) activity followed the electrical activity. Apart from this 
delay, there was a significant correlation between them.
To quantify the correlations between the Hilbert energy and 
IUPC data, a cross-correlation analysis was performed. The 
cross-correlation function (CCF) between the Hilbert energy 
and IUPC data is shown in Figure 3. There was a maximum 
correlation (coefficient) of 0.774 (square of this gives the % of 
correlation) between the two quantities at a time shift of −9.72 
s. For a negative shift, the IUPC data was shifted backwards in 
time. Thus, there was a delay of 9.72 s between the two sig-
nals, indicating that mechanical activity (i.e., IUPC) followed the 
electrical activity (i.e., magnetic signal).
Because MMG obtained from different sensors are heteroge-
neous in nature, the resulting Hilbert energy obtained (by add-
ing the HHT results across all the sensors) is noisy. To improve 
the correlation between the two signals, the results obtained 
from HHT were smoothed by performing moving average (non-
causal/zero-phase filter) with a window width of 10 s. The cor-
relation between the smoothed data and IUPC data is shown in 
Figure 4. The correlation between the signals increased from 
0.774 to 0.8684, with the delay remaining fairly the same value 
of approximately 9.72 s (Figure 4). 
Because the correlation analysis of a smoothed data is subjec-
tive, we performed the analysis as a function of the width of the 
smoothing window to see the influence of the window width 
on the correlation. Naively, one would expect the correlation 
to increase as a function of window width and reach a maxi-
mum value when the optimal window width is reached. Figure 
4 shows the correlation analysis as a function of the window 
width. As anticipated, the correlation increased with the in-
crease in window width and reached a maximum value for an 
optimal width of 27 s. A further increase in the window width 
resulted in a decrease of correlation because the smoothing 
process destroyed relevant signal content in addition to mini-
mizing the noise. 
The dependence of delay on the window width is shown in 
Figure 5. The delay remained fairly constant (stable) at around 
−9.72 s to a window width of 56 s. Although the smoothing pro-
cess reduced the correlation beyond the width of 27 s (Figure 5), 
the delay was quite robust to window width.

Noise separation with HHT
The reliability measurement was conducted in two different 
forms: a) the addition of a Gaussian noise (white noise) and 
b) the addition of a filtered noise. With Gaussian Noise, we 
show the reliability rate of HHT in the process of removing noise 
from the signal. Therefore, we added white noise to the signal 
and then used HHT to retrieve the original signal (Figure 6). 
Here, the first plot shows the original signal contaminated with 
a white noise. The second plot shows that the noise was re-
moved fairly well. The third plot is the corresponding IUPC data.  
To test the strength of HHT, we increased the noise level and 
conducted additional experiments to show the noise removal 
from the mixture for obtaining the original signal. The small de-
viation encountered in the resulting HHT signal is insignificant 
because the noise is quite large and it still corresponds to the 
IUPC (80%). We further increased the noise level and conducted 

the test again and, as expected, some small contractions were 
lost, but were still capable of decomposing the dominant con-
tractions from a signal which resembled nothing but a noise. 
Aiming to take the reliability testing to the next level, we made 

J Turk Ger Gynecol Assoc 2015; 16: 195-202
Aydın et al.
Automatic contraction detection198

Figure 1. IUPC data
IUPC: intrauterine pressure catheter

Figure 2. HHT (sum of all channels) 
HHT: Hilbert–Huang transform

Figure 3. Cross-correlation between the HHT and IUPC data 
HHT: Hilbert–Huang transform; IUPC: intrauterine pressure catheter; CCF: cross 

correlation function

Figure 4. Cross-correlation Function at time shift corresponding 
to the delay vs. moving average window width
CCF: cross correlation function; MA Window: moving average window



the frequency content of the noise, similar to the original signal 
in the following section.
In the previous section, the use of HHT revealed the success of 
white noise removal from the signal. However, the noise used 
has a different frequency content compared with the original 
signal which makes separation easier. More realistic results can 
only be obtained by employing filtered noise. Therefore, the 
white noise was filtered between 0.05 and 1 Hz to complement 
the original signal’s frequency range (also 0.05–1 Hz). Figure 7 
depicts the graph of the filtered noise (0.05– 1 Hz) and its fre-
quency content, while Figure 8 depicts the graph of the original 
signal and its frequency content.
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Figure 7. The filtered noise and its Fourier amplitude

Figure 8. Original signal and its frequency content

Figure 5. Time shift between IUPC and HHT vs. moving average 
window length
IUPC: intrauterine pressure catheter; HHT: Hilbert–Huang transform

Figure 6. Demonstration of the reliability of HHT using white noise
HHT: Hilbert–Huang transform; IUPC: intrauterine pressure catheter
Top panel represents the magnetomyographic (MMG) signal from one of the The 
SQUID Array for Reproductive Assessment (SARA) sensors with white noises (signal-
to-noise ratio (SNR)=0.4501 dB, SNR=−5.5705 dB, SNR=−9.0923 dB) added to it. 
Middle panel represents the Hilbert amplitude of the signal shown in the top panel. 
Bottom panel represents the intrauterine pressure recorded by intrauterine pressure 
catheter (IUPC).

Figure 9. Demonstration of the reliability of HHT using filtered 
white noise
HHT: Hilbert–Huang transform; IUPC: intrauterine pressure catheter
The quantities plotted are the same as in Figure 6, but with different signal-to-noise ratios 
(SNRs), i.e., SNR=0.4501 dB, SNR=−5.5705 dB, SNR=−9.0923 dB, SNR=−11.5911 dB.



Figure 9 show the decomposition of the original signal from a 
noise-contaminated signal. Here, both the signal and the noise 
have the same frequency content. Therefore, the separation is 
an extremely difficult task. The success in separating noise de-
creased when the noise had the same frequency range as the 
original signal. Therefore, what should the minimum frequency 
ratio between two signals be to reliably separate those signals? 
To provide an answer, we used synthetic data to investigate this 

issue. Our experiments showed that if the ratio decreases be-
low 1.5, then separating two signals becomes problematic.

Verification and validation of HHT in the separation of signals
For each figure in Figure 10, the first and second plots show the 
frequency contents of each signal. Those signals were mixed 
together, and HHT was then used to decompose them back 
from this mixture. The third and fourth plots of each figure show 
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Figure 10. Frequency content of the signals
IMF:  intrinsic mode function
The first two plots show the frequency content of each signal, and the second two plots show the frequency of the decomposed IMFs.



the frequency content of the decomposed IMFs. Notably, there 
are no problems in decomposing two signals if they have a fre-
quency ratio of 1.5 or higher. In other words, if the ratio is greater 
than or equal to 1.5, decomposed IMFs give the exact frequency 
contents of the original signals. 
As seen in Figure 10, the EMD algorithm is able to separate sig-
nals if their frequency ratio is higher than 1.5. When the ratio de-
creases below this point, the resulting IMFs decomposed from 
the original signal, start to include data from both signals.

Comparison of HHT with mother perception
Mother-perceived contractions were recorded in the STIM 
channel. We compared our findings with STIM data for the ad-
ditional reliability test of HHT approach. If we encountered a 
contraction which corresponds to STIM data, we counted it as 
a true positive, but if we encountered a contraction which did 
not correspond to STIM data, we did not count it as false positive 
because we do not expect the mother to feel every contraction. 
There may be a different threshold for different mothers where 
they can feel the contraction. Data used in this work were gath-
ered from the records of two patients. 
Figure 11 depicts HHT with mother’s perception. When a moth-
er felt a contraction, she pushed the STIM button when she 
thinks it has ended, and she pushed the button again with the 
assumption a new contraction started. In the figure, the mother 
perceived two contractions between 90–210 s and 610–695 s. 
Our HHT plot overlaps with those results; in addition, it shows 
another contraction at 310 s and 410 s, which is not recorded by 
the mother. Figure 12 shows another contraction perceived by 
the mother between 410 and 550 s. However, the mother did not 
record the contraction between 600 and 660 s. This may be due 
to the pressure not reaching the threshold level because HHT 
shows an increase followed by a large decrease in the electri-
cal activity around 610 s and then the same activity is repeated 
around 640 s.

Discussion

The objective of this study was to determine whether using 
HHT to analyze the uterine contraction data would help us 
gain a better insight of the myometrial activities of the human 
uterus during pregnancy. Based on the results obtained from 
the experiments, HHT appears to be a promising approach 
in detecting uterine contractions and shows pressure chang-
es in the womb without any invasive measurement such as 
IUPC. With appropriate filtering, a 75% correlation (square of 
the correlation coefficient, 0.8684) was revealed between the 
HHT and IUPC data, and there exists a delay of 9.72 s between 
electrical activity and mechanical activity. In addition to cor-
relation, mother-perceived contractions also support HHT re-
sults.
Through the use of the EMD algorithm, noise was removed from 
the signal, thus discovering if the noise has the same frequency 
content as the original signal, it becomes harder to remove the 
noise from the signal. Our experiments showed that for a reli-
able separation of signal from noise, the ratio of the frequency 

contents should be at least 1.5. There is a need for timely, ef-
ficient, optimized, and non-subjective automatic contraction 
detection approaches in the field of prenatal examination. It is 
the intension of this study group to revise and refine the exiting 
contraction detection algorithm to be useful in the near future. 
With the current system, it is possible to identify the antipodal 
activities in the cellular community.

Limitations
Although the SARA system covers the entire pregnant abdomen 
with 151 sensors recording the magnetic field, at the rate of 250 
samples/s and re-sampled with 25 samples/s, generated by the 
uterine myometrium, the primary frequency band of the uterine 
contractions are restricted between 0.1 Hz and 0.2 Hz, which 
represents underlying contraction activities (13). At this low fre-
quency band rate, we are forced to use a window size of 20 s for 
computing the synchronization indices. To avoid the unneces-
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Figure 11. Mother’s perception of two contractions

Figure 12. Mother’s perception of one contraction



sary distribution of the information collected from the uterine 
contractions, it is necessary to use small steps, more realistic 
windows size, and magnetic field data between 0.3 and 1 Hz for 
accurate analyses.
Also, the data used in this experimentation is pre-processed, 
i.e., that the original noise has been removed, and the effective-
ness test was conducted using white noise. To test the reliability 
of the system, a new study is in progress to validate the compli-
mentary findings of the method introduced here.
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